# **Rotation Crop Roundtable**

Discussing changing potato rotations in Prince Edward Island

#### **Ryan Barrett**

Research & Agronomy Coordinator Prince Edward Island Potato Board

# **Improving Soil Health**

- In Prince Edward Island, we have seen a decrease in soil organic matter over the past two decades.
- Soil Organic Matter:
  - Increases water holding capacity and CEC of soil
  - Reservoir for nutrients
  - Reservoir for beneficial microorganisms



#### Soil Health: a Potato Definition

- For many potato producers, a healthy soil is not just good soil organic matter, good soil structure, and a healthy microbial community, but is also free from soil-borne pests and diseases
  - Verticillum and root lesion nematodes
  - Streptomyces scabies (common scab)
  - Rhizoctonia
  - Wireworm



# **Building Healthier Soils**

- A number of soil-borne pests/diseases have limited chemical control options, or those options are unavailable in PEI (ie. fumigation)
- Organic amendments (ie. manure) are often unavailable or don't fit with food safety regulations
- Most Island growers are already used to growing non-commercial forage crops (ie. red clover) to feed the soil for the potato crop.
- So, tackling both of these challenges through use of rotation crops has rapidly increased.

#### Mustards

 Has been shown to be effective in reducing wireworm damage under double-cropping system (Noronha, AAFC)



 Other studies have shown beneficial effect on early dying complex, common scab, Rhizoctonia



#### Mustards

- Requires considerable tillage
- Requires water for biofumigation
- Requires adequate fertilization for maximum benefit
- Data from WSU has shown that mustards can host both V. dahliae and root lesion nematodes
- Can be used as a fall cover crop following wheat/barley/peas
- Brown vs. Caliente depends on what you're trying to do!





#### **Buckwheat**

- Has also been shown to be effective at fighting wireworm, possibly without need for green manure incorporation.
- Fast establishment, weed fighter, soil conditioner, phosphorus scavenger, low fertility requirements, fighting root lesion nematodes



#### **Buckwheat**

- Not frost tolerant (poor fall cover crop choice)
- Needs to be planted into warm soil
- Considerations for white mold in tight rotations with other host crops
- Doesn't regrow as well from mowing as mustard



# Sorghum Sudangrass

- Trap crop for Verticillium
- Builder of soil organic matter
- Root system doubles after first mowing, compaction fighter
- Can be underseeded with forage (ie. alfalfa)
- Soil conditioner, easy tillage following sudangrass



### Sorghum Sudangrass

- Inconclusive results on whether it multiplies nematodes
- Warm season crop, can't be planted until mid-June (weed mgmt)
- Don't let it get too mature (woody) or it can tie up N



# **Forage Pearl Millet**

- Literature from Quebec showing effect on reducing RL nematode populations (Belair et al. 2005)
- Similar management to sorghum sudangrass, good for soil OM and soil structure, similar growing season
- Can be grown in mixture with sorghum sudangrass (50/50)



# **Sudangrass/Pearl Millet**

- Still have a lot of questions about beneficial effect on reducing Early Dying symptoms, improving yield under local conditions
- Research by Mario Tenuta in MB in 2008 showed that Verticillium numbers might not noticeably decrease in soil samples, but disease incidence went down and yield increased.



# Tillage Radish

- Growing acreage in PEI in 2017 & 2018
- Establish in August following wheat, barley, peas, or biofumigant crop
- Large taproots to break compaction layers, improve water infiltration, prevent nitrate leaching
- Somewhat frost tolerant, breaks down easily in spring





# **Tillage Radish**

- No data on yields/disease incidence following tillage radish
- Host for Verticillium and nematodes?
- Consider seeding along with a grass crop for better C:N ratio





### **Multi-species mixtures**

- Much to be learned on how different mixtures may help with some soil health attributes but may not help with others.
- How diverse is necessary?
- Multi-year mixtures to reduce tillage?
- PEI Potato Board & AAFC rotation trial (Aaron Mills)
  comparing 2 species (SS + FPM), 5 species (SS, FPM, BW,
  Mustard, Faba), and 12 species mixture in potato rotation.
  Started in 2018



#### Some Recommendations

- Try one or two fields first before making a large change to rotation crops. Include a check strip!
- Match the needs of the field with the strengths/weaknesses of the rotation crop.
- Do *Verticillium* and nematode testing when nothing actively growing in the spring to get the most accurate measurement of year over year effect of crops on pop'ns
- Same goes for soil OM big difference between spring and fall conditions on numbers

#### Some Recommendations

- If trying to build or maintain soil OM...consider the amount of tillage in rotation, and whether there is an opportunity to reduce tillage passes.
- **Use of fall cover crops** to build soil OM is gaining traction, but important to understand effects on soil-borne diseases and pests.



### **Evaluating Mustard & Buckwheat**

| Rotation            | Total Yield<br>(cwt/ac) | Market. Yield<br>(cwt/ac) | WW Damage<br>(holes/tuber) |
|---------------------|-------------------------|---------------------------|----------------------------|
| P – W Wheat – Soy   | 353.7                   | 273.8                     | 2.0                        |
| P – BW – BW         | 420.1                   | 337.1                     | 0.3                        |
| P – Mus – Mus       | 470.0                   | 404.5                     | 0.3                        |
| P – Mus – BW        | 450.7                   | 409.1                     | 0.2                        |
| P – Fallow – Fallow | 371.4                   | 271.8                     | 0.1                        |
| P – Fallow – Mus    | 387.9                   | 324.8                     | 0.6                        |

Yields adjusted to 7 plants/10 ft row. Graded to Canada #1



#### **Evaluating Mustard & Buckwheat**

| Rotation    | Spring RLN<br>(#/kg soil) | Fall RLN<br>(#/kg soil) | Spring V. dahliae (cells/g) | Fall V. dahliae<br>(cells/g) |
|-------------|---------------------------|-------------------------|-----------------------------|------------------------------|
| Wheat – Soy | 200                       | 420                     | 1680                        | 10384                        |
| Mus – Mus   | 180                       | 940                     | 1469                        | 2065                         |
| BW – BW     | 360                       | 280                     | 697                         | 1833                         |

Testing before potato planting and at potato harvest

Not much difference in nematode numbers but big difference in Verticillium

