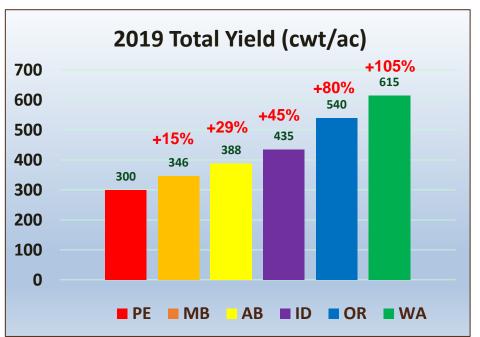


VARIETY DEVELOPMENT PROGRAM



Yield increase is essential to make PEI Potato Industry more competitive

> Higher yields will :

- Allow growers to invest
- Land, products, technology

- ✓ Reduce Land Required
 - Extend crop rotation
 - Soil quality improvement
 - Less use of risky areas

A new variety can benefit all potato industry stakeholders

For Farmers

To deliver varieties with lower crop inputs requirements, obtain higher yield crops in a sustainable and profitable way

For Customers

To help our customers to increase their competitiveness innovating the market and delivering great quality products

For Consumers

to provide the consumer with a product that meets and exceeds quality expectations and flavor, and is delivered in a responsible way.

Cavendish Farms variety screening program

1996 - 2009

- ✓ 1990's part of the APERC trials
- 100+ clones and varieties tested from private and public breeders

✓ Focus on :

- ✓ High yield
- ✓ Processing quality
- ✓ PVY, LB resistance

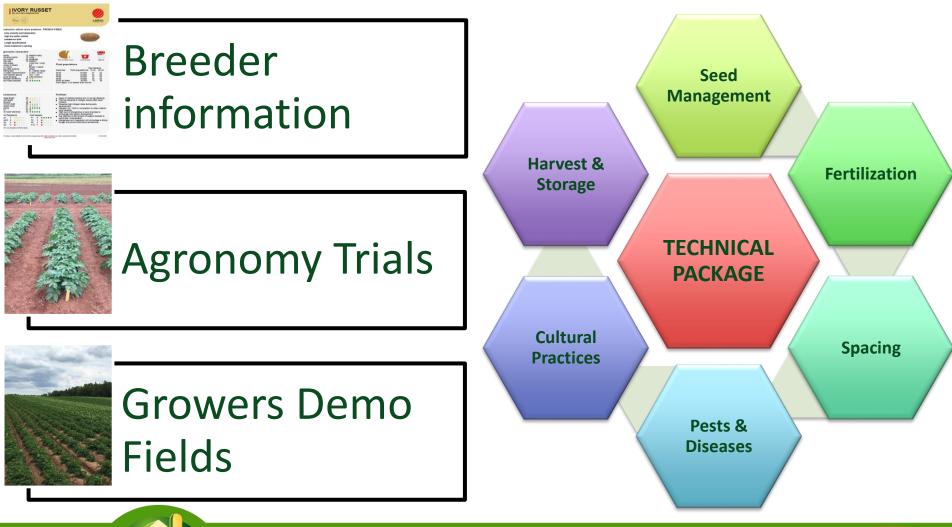
2010 - 2020

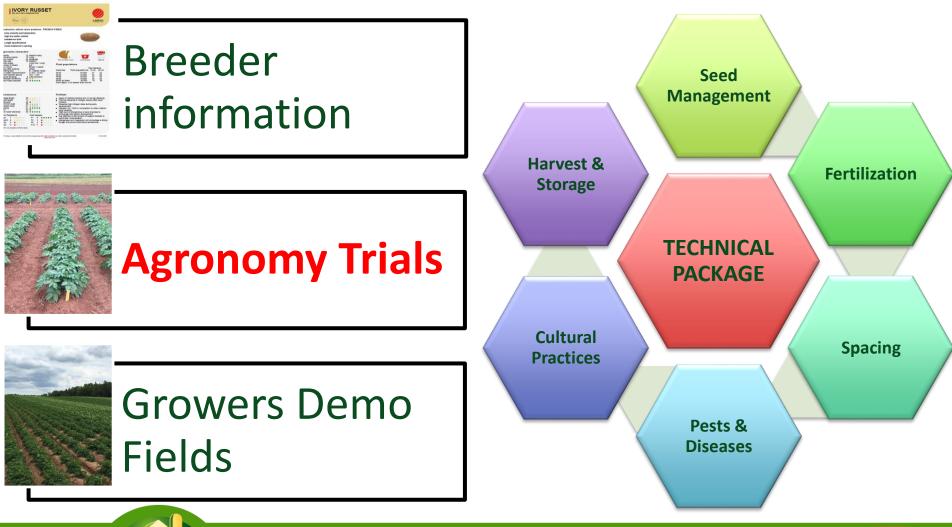
- ✓ 2015 Own trials + collaboration with CHC
- ✓ 80+ clones and varieties tested from private and public breeders
- ✓ Focus on :
 - ✓ High yield
 - ✓ Processing quality
 - ✓ Scab, PED, PVY resistance

Cavendish Farms variety screening program

SMALL PLOT TRIALS

- Only processing clones / varieties
- Commercial varieties as control
- ✓ Replicated treatments
- ✓ CF Research Farm
- Assessment of 15 attributes


Testing varieties from various companies


Collecting information and generating data for each new tested variety

Collecting information and generating data for each new tested variety

Cavendish Farms Ag Research Program

AGRICULTURAL RESEARCH

Research Plots :

- Potato varieties
- Fertility
- Disease control
- Seed Management
- Sustainable practices

Collaboration with Agronomy Initiative for Marketable Yield (AIM Group)

Seed Management

Production & Technology

Ag Research Partnership with Canadian Horticultural Council

CURRENT AG RESEARCH PROJECTS

- Wireworm control 🐲
- Potato Variety Evaluation
- Colorado Potato Beetle control
- Potato Early Dying control
- Common scab management

7.31 PM Thu Feb 21	P		ê hortco	uncil.ca			c 🖞	+ 0
et PAREH Har	In Fig Grow Split.	M Decema	Marrott A	ginhai env	Arther Da.	What a p	CrostRL1.	© Current
-	Canadian Horticultural Council	Conseil canadien de l'horticultur						
The voice of Ca	nadian fruit and	vegetable g	rowers					
Home About Us	Resources -	Advocacy • P	rejects and Freq	yans • Nor	bes • Fia	ç 00		Q

Current projects

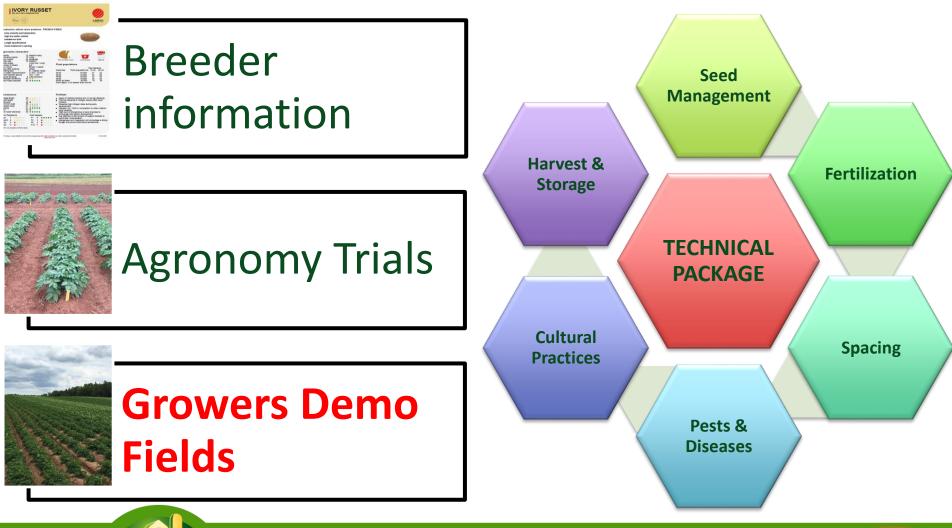
The Canadian Horticultural Council (CHC) oversees the following research projects, funded primarily under Agriculture and Agri-Food Canada (AAFC)'s Growing Forward 2 program with industry support.

For more information on CHC's projects and programs, contact aargentine@hortcouncil.ca

Apple research

- Optimizing Storage Technologies to Improve Efficiency, Reduce Energy Consumption, and Extend the Availability of Canadian Applies for Domestic and Export Markets [1]
- Improving Tree Fruit Storage Management Using Weather Based Predictions of Fruit Quality at Harvest [1]
- Performance of Honeycrap on New Size-Controlling Rootstocks [1]
- New Biological Control Agents for Postharvest Diseases of Pome Fruit [1]
- Development of External CO2 Injury in 'Empire' Apples during Storage Room Loading [1]

Potato research


- Understanding of Potato Virus Y Complex in Canada and Development of a Comprehensive On-Faim Management Strategy [1]
- Wreworm Control in Potatoes and Strategic Rotational Crops in Canada [1]
- . Development of a Rapid and Sensitive Triplex Nested Real-time PCR Method for Quantification of Verticilium in Soil [1]
- Zebra Chip and Potato Paylid Survey and Monitoring [1]
- Nitrogen Management for Improved Yield, Quality and Profitability of Potato [1]
- Canadian Potato Variety Evaluation Program [1]
- Characterization and tracking of strains of potato late blight pathogen in Canada [2]
- Survey of Susceptibility to Diagnostic Concentrations of Registered Insecticides in Canadian Colorado Potato Beetle Populations (2)
- Market Development for the Canadian Potato Industry (4)

[1] Funded under Cluster 2, a research program led by CHC and generously funded by neerly 50 industry partners and Antihensuation, an AAEC Contains Ecourary 2 initiative that remains evening and/or securing to response to

Collecting information and generating data for each new tested variety

Demo fields with growers for performance evaluation under commercial conditions

GROWERS DEMO FIELDS

- Most promising varieties
- ✓ Innovative growers
- ✓ Diversified sites
- ✓ Include check varieties
- ✓ Commercial attributes
- ✓ Keep x Drop decision

Higher yield performance and better processing attributes

BENEFITS

✓Increase grower income

- Allow growers to invest
- Land, Products, Technology

✓ Reduces Land Required

- Extend crop rotation
- Soil quality improvement
- Lower use of risky areas

Marketable Yield

Varieties tolerant to diseases can reduce the use of pesticides on potato crops

BENEFITS

- ✓ ↓ cost of production
 ✓ ↓ crop quality losses
 ✓ mark skillting of €€€
- ✓ ↑ probabilities of \$\$\$

Common scab

- \checkmark risk to develop resistance
- $\checkmark\,$ Use of pesticides with Ψ toxicity
- \checkmark \checkmark risk to have fish kill events

Potato early dying

Replacement of high demanding by low input varieties is a tool to reduce environmental impact

✓ Replacement of Russet Burbank by Prospect

- Nitrogen fertilizer needs
- R. Burbank : 180 lbs/ac
- Prospect : 130 lbs/ac (- 28%)

✓ Establishing optimal N fertilization for other varieties

Water management for potato crops

- Proper use of limited resources to optimize investment in the potato crop
 - Gains of 100+ cwt/ac in Irrigated fields vs. Dryland
 - Variety dependent : response to irrigation (Yield, Defects)
 - Prospect : very tolerant to drought

✓ Varieties in the pipeline with drought tolerance

Varieties with long-term storability can help growers to improve quality

✓ Selecting varieties tolerant to cold-sweetening

- Lower reducing sugars
- Store at lower temperature

BENEFITS

- ✓ Reduction of shrinkage losses
- ✓ Better raw potato quality

Development of specific technical package for each variety

Breeder Breeder Breeder information

IVORY RUSSET

Agronomy Trials

Growers Demo Fields

DAKOTA RUSSET

MANAGEMENT PROFILE FOR PEI GROWING CONDITIONS

GENERAL INFORMATION

Mid maturity variety (14 days later than Shepody), with medium sized and upright plants, high yield potential, good processing quality, high specific gravity and mid-term storability

VARIETY STRENGTHS

- High yield potential and high specific gravity

- Good processing quality, resistant to sugar ends and bruise

- Tolerant of common scab
- More tolerant to early dying than RB

WATCH OUT FOR

- Sets high on the hill, potentially exposing tubers to greening/sunburn

- Susceptible to black leg
- Prone to seed piece decay, which causes erratic emergence

- Sensitive to "Phos-acid" at regular rates, could show symptoms of phytotoxicity on leaves

- Strong apical dominance (lower number of stems)
- Low number of eyes, require larger seed pieces to avoid blind sets

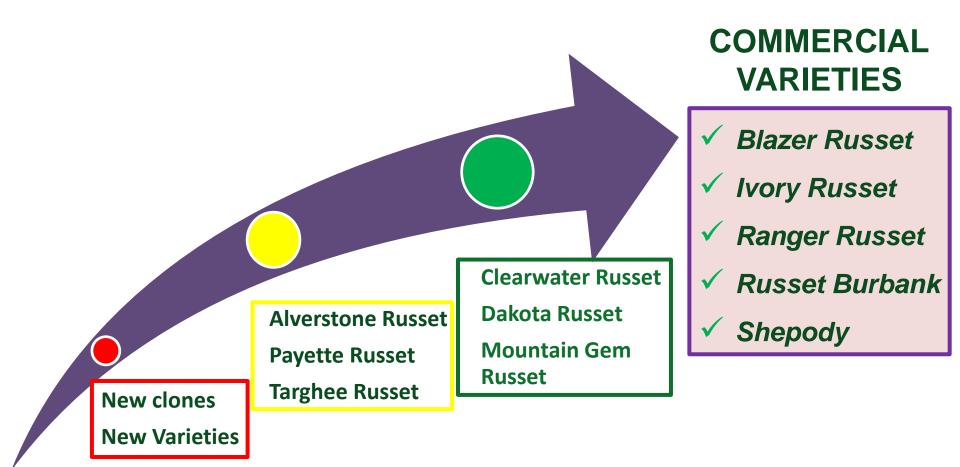
TUBER CHARACTERISTICS

TUBER SHAPE	Long and Blocky
SKIN TEXTURE	Light Golden Russet
FLESH COLOR	White
TUBER SIZE	Large
TUBER SET	Medium (7-8 tubers)
DENSITY OF EYES	Low
DORMANCY	Medium
SPECIFIC GRAVITY	High (1.086)

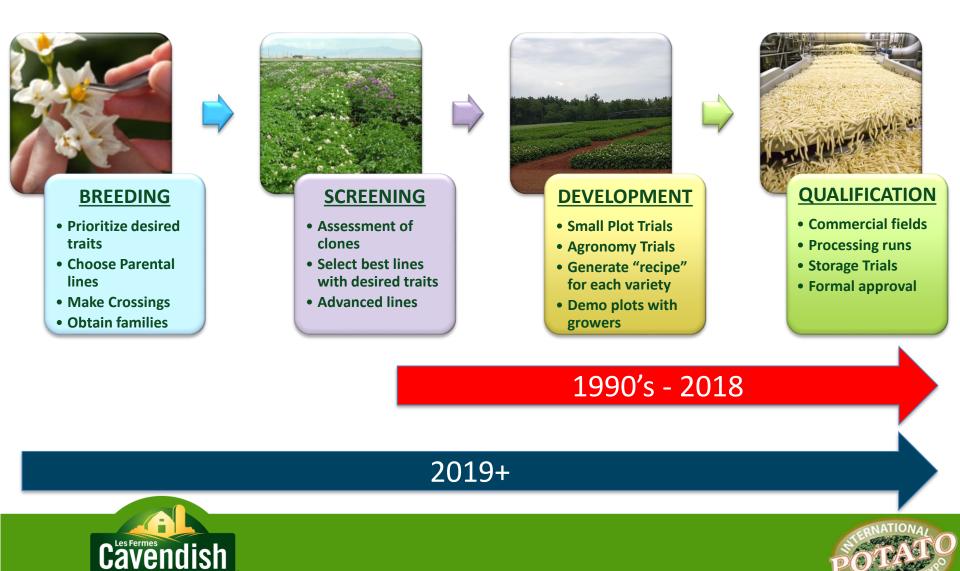
BEST CULTURAL PRACTICES

SPACING : 9-12"

FERTILIZATION : Maximum 160-180 Iba/ac N, 200 Iba/ac P and 200 Iba/ac K. N fertilization should be split between planting and hilling. Under irrigation this variety works better with N applications in smaller doses than fewer large doses.


PLANTING : Plant when soil temperature is warmer than 50F (10°C). Use good quality seed (clean of black leg/soft rot). Cut seed needs to be treated and dried out as quick as possible under forced ventilation for 10-14 days before planting (pile up to 3' height); that prevents seed rot and helps to break apical dominance. OTHER INFO : To reduce sunburn tubers a good hilling or cultivation when plants reach up to 8" height (beds need to be high and wide, not pointed); up to 2 hilling operations may be required. This variety has a positive response to irrigation, but avoid to use surface water on seed crops. HARVEST : Should be harvested before Oct.15th to avoid risk of frost damage. STORAGE : Store at 45F (7°C) for 8

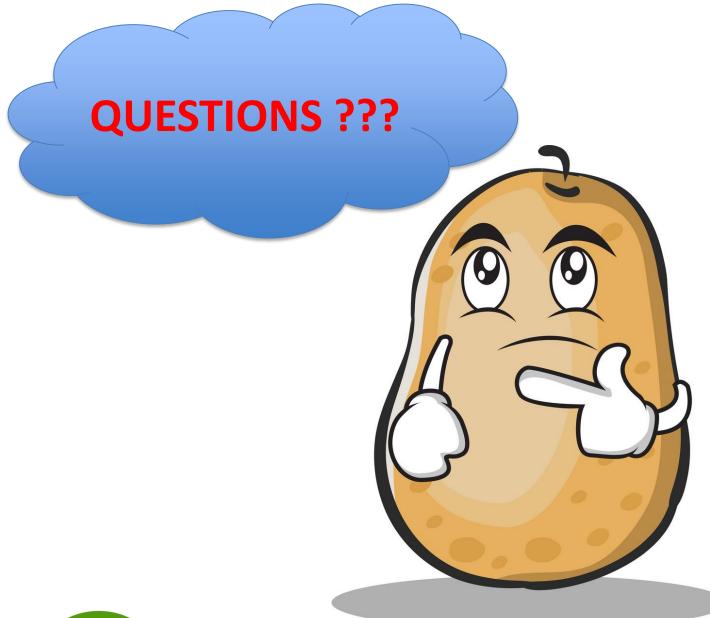
Material developed by Cavendish Farms – April 2019


What is coming in the variety pipeline

New approach to get a processing potato variety adapted to Eastern Canada

Cavendish Farms Potato Breeding Program

Local potato breeding program created to be a driver for a sustainable potato industry on PEI



- Privately funded and operated
- \$ 6M investment
- Get varieties adapted to local conditions
- Long term program
- Benefit to the PEI

potato industry

Contact information :

Newton Yorinori (Director Ag Research & Seed Development) +1 902 439-3620 yorinori.newton@cavendishfarms.com

