Let's Talk N₂Ohhh

Manitoba Potato Days January 25, 2023

www.soilecology.ca

Ο

Sources: http://www.sedationdentistry4u.com/nitrousoxide-chemistry.gif http://www.prestige-dental-care.com.my/blog/wp-

content/uploads/2011/02/DSC_0003-Copy.jpg http://s1168.photobucket.com/user/alc0nzy/media/IPD_VO VO_C30_NOS_TANKS.jpg.html http://www.seattleweekly.com/2010-07-07/news/the-gaspeddle-the-nitrous-mafia-spreads-widespread-panic-atsummer-music-festivals/ http://www.consumerqueen.com/wp-

content/uploads/2013/07/reddi_wip.png

Nitrogen Cycle

Direct Emission of N₂O

up to 3% of fertilizer lost as N₂O

Indirect Losses of N₂O - Ammonia

Indirect Loss of N₂O – Nitrate Leaching

Recap: Sources of N₂O

Direct Sources

Green manure ploughdown Animal manure storage and addition Nitrogen Fertilizer addition Crop residues

N₂O from nitrification and denitrification in soil

In-direct Sources

Ammonia volatilization Nitrate leaching

N₂O from ammonia in upper atmosphere denitrification of nitrate in waters

Perspectives on N Losses

- Annual emission of N₂O from fields vary from 0.5 to 4 kg N/ha/year – N₂O 300x more powerful than CO₂ to warm the atmosphere thus *environmentally but not agronomically important*
- Depending on soil, climate and practices- leaching, volatilization and denitrification losses 10-60 kg N/ha/year – agronomically & environmentally important

So What is All the Huff About N₂O?

PEI GHG by Sector

Emissions in PEI Agriculture

Source	CO ₂	CH ₄	N ₂ O
Enteric Fermentation		110	
Manure		18	20
Soils			
Direct			110
Indirect			50
Burning		0.20	0.05
Liming, Fertilization	7		

Commitment to reduce GHG emissions by 1/3 in 2030 Commitment to be GHG neutral by 2050

How We Study N₂Ohhh

 Consider field properties

Emissions Go Up with N Rate

Some Points

- Emissions are going to happen with N additions
- N additions to potato are large, thus large emissions compared to field crops
- Irrigation is important, increase emissions
- Fertigation is an opportunity to throttle N additions

Enhanced Efficiency (EEF) N Fertilizers

Stabilized N

- <u>Urease inhibitor</u>
- o Nitrification inhibitor
- o Double inhibitor
- Controlled Release
 - o Polymer Coated Urea

Slow Release

 Sulfur-coated Urea, Methylene Urea, Isobuylidene Diurea, Urea Formaldehyde, Urea Triazone

Some N Stabilizers in the Market

Fertilizer Type and Timing on Emissions 2011 Manitoba

Fertilizer Type and Timing on Emissions 2012 Manitoba

Split and Split/Fertigation

Emission Summary: ESN and Banding

 $N_2O (kg N ha^{-1}) = EF (\%) = EI (g N Mg^{-1})$

Experiment 1

Year	Difference in Year			
2011	2.07 A	0.95 A	57.0 A	
2012	0.58 B	0.31 B	16.8 B	
Treatment				
Control	0.46 c	-	14.4 d	ESN
ESN _{100-BI}	1.33 ab	0.88	32.7 c	Lower Emissions
ESN _{100-Bd}	1.04 b	0.59	25.8 c	
ESN _{200-BI}	1.87 a	0.71	52.4 a	
ESN _{200-Bd}	1.28 b	0.41	35.8 bc	Banding Less
U _{200-BI}	1.72 ab	0.63	45.0 abc	than
U _{200-Bd}	1.56 ab	0.55	51.9 ab	Incorporation

Emission Summary: ESN, Split and Fertigation

	N_2O (kg N ha ⁻¹)	EF (%) EI (g N Mg ⁻¹)
Experiment 2 Year	fference in Y	ear		
2011	0.78 A	0.31 A	23.8 A	
2012	0.40 B	0.12 B	11.4 B	
Treatment				
Control	0.26 d	-	11.1	
$U_{\rm BI}$	0.96 a	0.39 a	26.6 S	plit and
ESN _{BI}	0.82 ab	0.31 ab	23.7	nlit/Fertigation
U_{Split}	0.39 cd	0.07 b	11.3	ower Emissions
FertigationLow	v 0.60 abc	0.19 ab	20.2	
Fertigation _{Hig}	_h 0.49 bc	0.13 b	12.6	

4R Senior Industrial Research Chair

Many 4R Practices Significantly Reduce N₂O Emissions but Don't Change Yield

Management Practice	Site Years	N ₂ O Reduction %*	Yield Reduction %
Nitrification Inhibitors	22	32	1
Polymer Coated Urea (ESN)	21	27	increase 2
Deep Banding	16	3	1
N Fixing Legumes	15	61	NA
Split N Application	13	48	increase 3
Fall Application	7	increase 36	increase 1
Shallow Banding	6	increase 89	5
Cover Crops	4	1	
Organic Production	2	17	32

Summary of Field Studies by the 4R Chair Program from 2010-present

4R N Processing Yield Study

Treatments	Total N applied	Pre-plant broadcast incorporation		At-pla	At-plant banding At hilling incorporation		Fertigation			
		Rate	Source	Rate	Source	Rate	Source	Rate	Rate per week*	Source
Control	0	_	_	_	_	_	_	_	_	_
UBI	100	100	urea	_	_	_	_	_	_	_
U _{Split-BI}	100	40	urea	_	_	60	urea	_	_	_
U _{Split-Bd}	100	_	_	40	urea	60	urea	_	-	_
SU _{Split-BI}	100	40	SuperU	_	-	60	SuperU	_	_	_
SU _{Split-Bd}	100	_	_	40	SuperU	60	SuperU	_	_	_
ESN _{BI}	100	100	ESN	_	-	_	_	_	_	_
$(ESN + U)_{BI}$	100	50 + 50	ESN+urea	_	-	_	_	_	_	_
Fertigation-A	100	60	urea	_	_	_	_	40	17, 13, 10, 0	UAN
Fertigation-B	100	40	urea	_	_	-	_	60	20,17, 13, 10	UAN
Fertigation-C	100	30+30	ESN + urea	_	_	-	_	40	17, 13, 10, 0	UAN

Values are percentage (%) of total N fertilizer added

*In-season fertigation was conducted 8, 9, 10, and 11 weeks, respectively

Fertilizer Type: Urea, SuperU, ESN, UAN Placement: Incorporation, Banded Fertigation Scheduling: High, Low

Marketable Yield Summary

	2013	2013			2015	Mean
	Carberry Mg ha ⁻¹	Carman	Carberry	Carman	Carberry	
Control	47.9	31.1	20.7	39.1	33.1	34.4
U _{BI}	54.3 a	52.0 a	40.9 ab	57.4 a	46.1 a	50.1
U _{Split-BI}	51.8 a	53.2 a	48.3 ab	58.6 a	50.6 a	52.5
U _{Split-Bd}	55.7 a	48.8 a	49.5 ab	59.4 a	49.1 a	52.5
SU _{Split-BI}	56.1 a	48.0 a	51.0 a	56.8 a	49.7 a	52.3
SU _{Split-Bd}	54.3 a	50.3 a	46.2 ab	57.5 a	50.0 a	51.7
ESN _{BI}	58.2 a	54.5 a	46.9 ab	53.8 a	48.9 a	52.5
$(ESN + U)_{BI}$	51.4 a	53.3 a	41.0 ab	52.6 a	50.3 a	49.7
Fertigation-A	57.9 a	54.2 a	41.5 ab	57.2 a	52.0 a	52.6
Fertigation-B	56.4 a	50.8 a	39.7 b	54.7 a	51.6 a	50.6
Fertigation-C	58.0 a	47.8 a	45.7 ab	54.9 a	53.1 a	51.9
Mean	54.7 A	49.5 B	42.9 C	54.7 A	48.6 B	

No Consistent Effect of Treatments Urea and Up Front N applications Performed Well

Credit for N Mineralization from Soil Organic Matter

Step 5: Credit soil organic matter content (S)

2021 Trial PEI

In 2021 compared the

- •Grower Standard Practice (GSP)
- •GSP + 25%
- •GSP 25%

Object to generate N response curve and see if BNA predicted where there would be a yield response.

- No yield response to N!
- But there was increased N₂O emissions with increased N rate.

L3

■-25% ■GSP ■+25%

L4

2.0 1.0 0.0

L1

L2

Marketable Yield

L5

Average

2021 PEI Trial

In 2021 compared the

- •Grower Standard Practice (GSP)
- •GSP + 25%
- •GSP 25%

Object to generate N response curve and see if BNA predicted where there would be a yield response.

- No yield response to N!
- But there was increased N₂O emissions with increased N rate.

Residual Soil Nitrate

2022 PEI Trial

In 2022 compared the

- •Grower Standard Practice (GSP)
- Rate adjusting GSP based on BNA
- •GSP 25%
- •100 lbs N/acre

Object again was to generate N response curve and see if BNA predicted where there would be a yield response.

- Still no yield response to N!
- But again there was increased N₂O emissions with increased N rate.

DALHOUSIE UNIVERSITY

Not seeing a yield response to added nitrogen!

Left-over Nitrate in the Soil Profile

Left-over nitrate not a function of N application...

Profile nitrate and N mineralization potential

Does 4R work?

Living Labs Side-by-Side Trials

Gross Returns

Living Labs Side-by-Side Trials

N2O Emissions

Break Even Point (BEP) Analysis for Potato

Manitoba

Potato \$15/cwt Assume rate 134 lb N/ac Assume 30% N₂O reduction with EEF Assume 2.5% N₂O-N kg/kg N

Product	\$/lb N	\$/ac	cwt BEP	Ib N/ac BEP	\$/t CO ₂ BEP	PEIFA acres
Urea (46-0-0)	1.58	212	-	-	-	-
Urease Urea (46-0-0)	1.66	223	0.7	127	-	7000
Nitrification Inhibitor (46-0-0)	1.70	228	1.1	124	69	4600
Double Inhibitor Urea (46-0-0)	1.71	229	1.2	123	74	4300
Polymer Coated Urea (44-0-0)	1.74	233	1.4	120	92	3500

Tenuta, M. current analysis

IMPROVING NITROGEN MANAGEMENT

NITROGEN MANAGEMENT BMP

- Max \$75K over two years
- Polymer coated urea
- Nitrification and urease inhibited fertilizer
- N management plans
- Soil testing
- Soil mapping
- Adding legumes to a crop rotation
- Application equipment
- Split application
- Organic N sources

https://peifa.ca/wp-content/uploads/2022/09/PEIFA_OFCAF_Program-guidelines_V3_2022-2023.pdf

Proposed Potato Cluster Project

Benefits of Improved N Use Efficient Varieties and Enhanced Efficiency Fertilizers

Thoughts

- N_2O reductions achievable with 4Rs
- Inhibitors work to reduce direct and indirect emissions
- Placement works to reduce emissions
- Splitting applications and fertigation work to reduce emissions
- Benefit to yield not as apparent
- Missing understanding of rate effects in combinations with 4Rs
- Missing understanding of 4Rs and indirect N_2O emissions
- Missing integration of broad Canadian network of research, particularly AAFC, ECCC, academia, farmers and industry together: Potato Cluster
- N rates keep going up so imperative to tackle emission reductions to not handcuff production

Important Thoughts

- Use good practices such as 4Rs and N₂O will decrease without hurting yield
- Cost of 4Rs can be offset by reduce N rates because of lower losses (more of a sure thing)
- Cost of 4Rs can be offset by higher yields (not clear a sure thing)
- Cost of 4Rs can be offset by OFCAF cost share programs
- As time goes on return on 4Rs to reduce N₂O should improve from a C market
- N management is more challenging in potatoes (tuber set, vine/tuber growth, tuber quality) -

Thank You to

- AAFC, NSERC, Manitoba Agriculture, KPPA, Simplot, McCain, MCDC, Nutrien, KOCH
- Gaia Consulting
- Will Shaw, Brad Sparling, Mervin Bilous, Xiaopeng Gao, Krista Hanis-Gervais
- Many farmer co-operators in Manitoba

