

#### **Foliar Disease Problems**



# **Blackleg/Soft Rot - Symptoms**



## Blackleg/Soft Rot – Causal Agents

- Pectobacterium spp.; Dickeya spp.
- Gram-negative rods





## Blackleg/Soft Rot – Disease Cycle

- tuber-borne (seed-borne)
- spread by seed cutting and handling
- contaminated soil water
- contaminated tubers going into storage are symptomless until stressed (harvest & storage operations; other diseases)

## **Blackleg/Soft Rot – Management**

- clean seed
- sanitation of equipment
- plant well-suberized seed pieces in welldrained soil
- reduce tuber bruising at harvest
- do not harvest when soil temperatures are too warm (>25 C)
- in storage, wound healing then cooler temperatures and adequate ventilation

# **Black Dot - Symptoms**







# Black Dot – Causal Agent Colletotrichum coccodes









Fig. 6

### **Black Dot – Disease Cycle**

- overwinters as sclerotia on tubers or in plant debris in the field
- infects other Solanaceous crops
- acts in combination with other pathogens
- most severe with continuous moisture and warm temperatures; plant injury or stress
- tuber infection at stem end related to aboveground disease

## **Black Dot – Management**

- use clean seed
- crop rotation
- adequate moisture and fertility
- protective fungicides to reduce foliar infection
- grow early cultivars

# Rhizoctonia Stem and Stolon Canker; Black Scurf



## Rhizoctonia Canker & Black Scurf – Management



# White Mold – Causal Agent Sclerotinia sclerotiorum



## White Mold – Disease Cycle

- pathogen overwinters as sclerotia
- sclerotia germinate directly or produce apothecia and ascospores
- apothecia produced over a 2 to 8 week period beginning at row closure
- ascospores require free water for germination and infect senescing leaves or blossoms
- very wide host range









## White Mold – Management

- protectant fungicides applied before infection (number depends on length of time of apothecia production in the area)
- manage canopy to reduce conducive microclimates (fertility, irrigation, etc.)

# **Early Blight and Leaf Disease Complex**



# **Conidial morphology**

#### A. solani:

- long/slender
- beak present
- solitary



#### A. alternata:

- short/club-shaped
- no beak
- chains







# 'Late' Blight vs 'Early' Blight



- Can appear early in season
- Attacks vigorous, young foliage
- Only overwinters in infected tubers
- Can appear late in season
- Attacks older tissues and/or stressed plants
- Overwinters in debris

#### Early Blight/Brown Spot Management – Cultural Practices

- High quality seed
- Disease forecasting tools
- Regular field scouting
- Eliminate sources of primary inoculum
  - Encourage breakdown of crop residues and debris (crop rotation, tillage)
- Select less susceptible varieties (disease more severe in early-maturing cultivars)
- Reduce crop stress
  - Soil moisture, fertility, other diseases
- Proper harvest and storage procedures (proper skin set; reduce bruising; allow wound healing)





# Early Blight Management – Cultural Practices Percent Organic Matter



## Early Blight/Brown Spot - DISEASE MANAGEMENT

#### **Fungicides**

- a preventative program works best
- good coverage is key
- frequent application to protect foliage
- timed applications when weather conditions are conducive to disease and /or disease risk is high



| Commercial Name                           | Active Ingredient                 | FRAC Group |
|-------------------------------------------|-----------------------------------|------------|
| Aprovia Top                               | benzovindiflupyr + difenoconazole | 7+3        |
| Azoxy                                     | azoxystrobin                      | 11         |
| BAS 700                                   | fluxapyroxad                      | 7          |
| Cabrio Plus                               | pyraclostrobin + metiram          | 11+M       |
| Cantus                                    | boscalid                          | 7          |
| Headline                                  | pyraclostrobin                    | 11         |
| Inspire                                   | difenoconazole                    | 3          |
| Luna Privilege<br>Velum Prime (in-furrow) | fluopyram                         | 7          |
| Luna Tranquility                          | fluopyram + pyrimethanil          | 7+9        |
| Quadris                                   | azoxystrobin                      | .11        |
| Quadris Top                               | azoxystrobin + difenoconazole     | 11+3       |
| Quash                                     | metconazole                       | 3          |
| Reason                                    | fenamidone                        | 4 11       |
| Scala                                     | pyrimethanil                      | 9          |
| Sercadis                                  | fluxapyroxad                      | 7          |
| Tanos                                     | famoxadone + cymoxanil            | 11+27      |
| Treoris                                   | penthiopyrad + chlorothalonil     | 7+M        |
| Vertisan                                  | penthiopyrad                      | 7          |

# **Gray Mold - Symptoms**







# **Gray Mold – Causal Agent**

# Botrytis cinerea





### **Gray Mold – Disease Cycle**

- ascospores or conidia from sclerotia in crop debris
- wide host range
- flower infection; petals fall to initiate foliar infections
- cool, wet weather and dense canopies favour disease
- wounds facilitate infection, particularly of tubers

## **Gray Mold – Management**

- do not encourage excessive vine growth
- fungicides (resistance in strains infecting other crops)
- reduce tuber injury at harvest and encourage tuber healing

# Late Blight = *Phytophthora infestans*

• oomycete (related to algae)



# Symptoms of Late Blight on Tomato



#### **Sources of Pathogen Inoculum**

#### **Alternate Hosts**



**Volunteers** 



**Adjacent Fields/Production Areas** 

#### **Infected Potato Seed**



**Cull Piles** 





# The Disease Triangle



# Late Blight (*Phytophthora infestans*) Recent Canadian Surveys



#### P. infestans - DISEASE MANAGEMENT

#### **Manage Late Blight in Tomatoes!**

- Look for disease in transplants (industry and home-owner awareness)
- Manage the disease in tomatoes grown in home gardens
  - destroy and bag diseased plants
  - grow resistant varieties!
  - awareness of issue in general public



# When Late Blight is Present

 Immediately destroy infected plants and surrounding area (twice the size of the infected area - either side).



 Late in the season it is advisable to avoid excessive irrigation as tubers become infected with late blight when spores wash down through the soil from infected leaves.

<sup>\*</sup> Courtesy of Khalil Al-Mughrabi, NB Department of Agriculture, Aquaculture and Fisheries

#### P. infestans - DISEASE MANAGEMENT

#### **Late Blight Fungicides**

- a preventative program that starts early in the season is critical
- good coverage is key
- frequent application to protect new foliage
- specialty products when weather conditions are conducive to disease and /or disease risk is high



# **Early Dying Complex**

Verticillium spp., nematodes, Colletotrichum, etc.



# **Verticillium Wilt – Causal Agent**

Verticillium dahliae – microsclerotia Verticillium albo-atrum – septate, resting, dark mycelia

verticillate whorls



# **Verticillium Wilt – Disease Cycle**

- contaminated soil; infected or infested seed
- survive via microsclerotia or resting hyphae
- infect roots, moves to vascular system
- wide host range
- synergistic interaction with root lesion nematode, and Colletotrichum coccodes (Early Dying Complex)

### **Verticillium Wilt – Management**

- resistant and tolerant cultivars (ie. Butte)
- adequate fertility reduces disease severity
- avoid water stress
- crop rotation
- green manure crops (biocontrol)

# What is potato wart?

- Potato wart is a disease caused by a soil-borne fungus Synchytrium endobioticum
- Warts or cauliflower-like formations on tubers and sprouts of plant
- Spores can remain viable for decades (> 40 years)
- Several pathotypes (or races) exist and resistance to potato variety generally pathotype-specific.
- Spread through the movement of potato crops, soils, or equipment.
- S. endobioticum is a quarantine organism (CFIA regulated pest, US Select Agent List)













#### **Potato Field Guides**









-Contact Rick Peters: rick.peters@agr.gc.ca

